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Summary

Visual Sample Plan (VSP) is an easy-to-use visual and graphic software tool being developed by
the Pacific Northwest National Laboratory (PNNL) to select the right number and location of
environmental samples so that the results of statistical tests performed to provide input to environmental
decisions have the required confidence and performance. It is a significant help in implementing the Data
Quality Objectives (DQO) planning process that was developed by the U. S. Environmental Protection
Agency (EPA).

Gilbert et al. (2001) documented the quality assurance (QA) procedures that were conducted to
assure that Version 0.91 of VSP was operating correctly. Subsequently, Version 0.91 was renamed
Version 1.0 and placed on the internet at http://dqo.pnl.gov/vsp . Since that time VSP has been enlarged
and improved and is now available as Version 2.0. The current document is an expansion of Gilbert et al
(2001) to include the QA procedures and testing that were conducted to assure the validity and accuracy
of the new features added to Version 1.0 to obtain Version 2.0.

Features added to Version 1.0 include the following:

. Methods for determining the number of samples needed for three additional sampling designs:
. Stratified Sampling (StS) to estimate a weighted mean or proportion over several
subareas (strata) of the study area
. Ranked Set Sampling (RSS) to estimate the mean of a population based on data from

field locations that are selected using simple random sampling in combination with either
expert opinion or quantitative screening measurements in the field

. Adaptive Cluster Sampling (ACS), a phased sampling design, to obtain data to 1)
estimate the mean of a population that contains one or more local areas of elevated
contamination, and a 2) determine the boundary of the local areas of elevated
contamination that are detected during the first phase of sampling

. Sequential sampling, wherein sampling and testing the sample mean against a threshold value is
conducted repeatedly over time, each time combining new data with the previous data, until a
decision can be made with specified confidence. Two statistical tests are implemented: (1) the
Sequential Probability Ratio Test (SPRT), which is used when the standard deviation of the data
is known, and (2) Barnard’s sequential t-test, which is used when the standard deviation is not
known.

. Transect (swath) sampling in which a field detector (e.g., radiation detector or a geophysical
sensor of unexploded ordnance) makes measurements from the ground or from aircraft along
transects laid out in a parallel, square, or rectangular grid design across the study area to search
for objects or areas of contamination. Features include:

. Calculation of the probability of traversing and detecting a target area of specified size,
shape, and density of objects using the transect design developed in VSP
. Probability that a target area exists even though none was found using the transect design
. Computing the number of transects that should be surveyed to achieve a specified confidence that

the fraction of detective transects (e.g., those that contain unexploded ordnance) is less than a
specified value

. A VSP-generated summary report of the sampling design developed by the VSP user. This report
is available in Version 2.0 for most of the sampling designs in VSP.

il



. New help features including 1) a “Welcome to Visual Sample Plan” screen that provides quick
tips on how to get started using VSP and 2) a “VSP Advisor” that gives guidance on using VSP
and what it does

. Ability to add a “historical” flag to previously obtained samples that are placed on the study area
map by the VSP user

. Improvements in operating with the MAP view that displays the VSP user’s site map and study
areas

For each sampling design in Version 2.0 of VSP this report contains 1) the formulas and methods
used to obtain the recommended number of samples, 2) the assumptions, technical basis, and scientific
source (e.g., peer-reviewed papers and books) of the design, and 3) the QA activities conducted (e.g.,
independent hand and computer computations) to verify that the models and methods used are correctly
programmed and implemented in VSP.
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1.0 Introduction

Visual Sample Plan (VSP) is a software tool under development at the Pacific Northwest National
Laboratory (PNNL) with support from the U.S. Department of Energy (DOE), the U.S. Environmental
Protection Agency (EPA), and the U.S. Department of Defense (DoD). VSP is used to select the right
number and location of environmental samples in order to achieve various sampling objectives with
required performance. Version 2.0 of VSP provides formulas and statistical algorithms to compute the
number of samples needed for specific statistical tests, estimations, an, evaluations appropriate for the
following environmental sampling goals:

. comparing an average or proportion to a fixed threshold value

. comparing an average or proportion to a reference area average or proportion

. constructing a confidence interval on a mean

. estimating a mean or a proportion within specified cost and variance constraints
. locating a hot spot

. finding a UXO target area (not yet peer-reviewed)

An overview of Version 2.0 is provided in Section 2.0. Section 3.0 presents (in Section 3.1) the
equations, computation methods, and underlying assumptions used to compute the required number of
samples (sample size) and other quantitative outputs in Version 2.0, as well as (in Section 3.2) the
activities, computations, and other quality checks conducted by PNNL and the Research Triangle Institute
(RTI) to:

. verify the technical and scientific basis of the sample-size equations and other computational
algorithms used,

. verify that those equations and computational methods are correctly programmed and
implemented, and

. evaluate the correctness of the non-statistical elements of the user interface and input/output
procedures.

The verification activities and documentation of the non-statistical components of VSP are
provided in Section 4.0. Section 5.0, which provides the reference list, is followed by the Appendices.
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2.0 Visual Sample Plan Software Overview

Visual Sample Plan (VSP) is an easy-to-use, visual and graphic software tool. It is a significant
help in implementing the sixth and seventh steps of the data quality objectives (DQO) planning process
(“Specify Tolerable Limits on Decision Errors” and “Optimize the Design for Obtaining Data,”
respectively). These steps of the DQO process are needed to determine the number and field location of
samples required for the sampling objective of interest, such as comparing a mean to a fixed threshold
value, comparing a mean to a reference area mean, estimating a mean with specified accuracy and
confidence within cost constraints, finding hot spots of a specified size and shape, and finding target areas
that may contain unexploded ordnance (UXO). All of these objectives are included in Version 2.0 of
VSP.

VSP is designed primarily for project managers and other environmental professionals who may
not have extensive statistical training, although individuals with statistical expertise will also find the
program useful. VSP is applicable to any two-dimensional geographical population to be sampled,
including surface soil, a defined layer of subsurface soil, building surfaces, water bodies, or other similar
applications.

When VSP is opened, the Welcome to Visual Sample Plan and the VSP Advisor screens appear
that provide help on how to get started using VSP. These screens provide answers to questions like
“What will VSP do?”, “How do I get started using VSP?”, and “How does VSP fit into the DQO
process?”. Then the user imports or draws a map of the facility that contains the geographical areas to be
studied. After the VSP user selects the particular study areas of interest on the site map, the sampling
goal of interest is selected from the sampling goals pull-down menu. The next step is to enter design
specifications (DQOs) into the design dialogue box of the selected sampling goal. VSP uses these
specifications (performance requirements) to determine the recommended number and location of
samples (or spacing of sampling transects) in the field that are needed to achieve the desired performance.
The output of VSP takes several forms, some of which are shown in Figure 2.1. This figure displays:

. the required number and location of sampling locations,

. the Decision Performance Goal Diagram (DPGD), which shows the VSP user’s acceptable
probabilities of making decision errors using a statistical test,

. a report that summaries the sampling design constructed by VSP based on user DQOs, and

. a list of the geographical sampling locations determined by VSP.

All of these outputs can be saved, copied, and pasted in project reports such as the Quality
Assurance Project Plan (QAPP) and the Sampling and Analysis Plan, as well as in presentation slides and
technical papers. The sampling locations can be exported as a Data Exchange Format (DXF) file for use
in a geographical information system (GIS) or global positioning system (GPS) software package.

The sample locations at the study site are determined by the specific sampling goal and sampling
design selected by the VSP user. Version 2.0 of VSP permits the user to select the following designs:
simple random sampling (SRS), systematic (grid) sampling, stratified sampling (StS), ranked set sampling
(RSS), adaptive cluster sampling (ACS), transect sampling (TS), and judgment (authoritative) sampling.

VSP contains two types of random number generators which are used to determine randomly

selected sampling locations at the study site: 1) a pseudo-random number generator, for which each
potential location has an equal and independent chance of being selected, and 2) a quasi-random number

2.1
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Figure 2.1. VSP Quad Window Display

generator (Press et al. 1992), for which locations are chosen to be somewhat more evenly spaced than
what is typically obtained using the pseudo-random number generator. Version 2.0 also enables the user
to add sample points to a current design either manually (subjectively) or using the Adaptive Fill
algorithm. The Adaptive Fill algorithm adds data points in such a way as to avoid existing sampling
locations.

Version 2.0 of VSP also contains a Measurements Quality Objectives (MQO) module that
enables the user to assess the cost and benefits of two alternative analytical measurement protocols. The
MQO allows the user to evaluate the tradeoffs between taking more samples or performing replicate
analyses on each sample. The MQO module will compute the number and cost of field samples required
for a specified analytical method when the user specifies the number (r = 1, 2, ... m) of replicate analyses
being considered, the variability in the data due to only the analytical measurement process, and the
variability due to sampling and all other sources of variability that enter prior to the analytical
measurement process.
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3.0 Verification and Documentation of Statistical Methods and
Computations

The activities conducted in evaluating the statistical methods and computations contained within
Version 2.0 of VSP are documented in this section.

Two criteria were used to assess the scientific basis of the sample-size equations in VSP:

. Were the sample-size equations and other statistical algorithms used published in peer-reviewed
scientific publications?
. Did the EPA or other government or regulatory agency publications and guidance documents

recommend the sample-size equations and algorithms for environmental applications?

The sample-size equations and algorithms in Version 2.0 of VSP are valid if the assumptions
used in deriving them are valid for the study area. These assumptions are documented in Section 3.1.
The user of VSP must determine if the assumptions are reasonable for the site of interest and seek advice
from a statistical expert if assumptions are seriously violated.

To verify that the sample-size equations were correctly programmed and provide correct results,
the number of samples computed using the equations in VSP were compared with hand calculations as
well as those obtained by an independent exercise of the equations using an independent computer code.
An S-PLUS ® computer code was constructed for this purpose, as discussed in Section 3.2.1. Also, SAS
(Statistical Analysis System) codes were written to verify VSP computations for sequential testing
(Sections 3.2.4 and 3.2.5). Other such comparisons are discussed in Section 3.2.2. The accuracy of the
VSP calculations of the number of samples needed to detect hot spots was also checked, as discussed in
Section 3.2.3. Finally, the correctness of the four output “views” in VSP (see Figure 2.1) were checked
for accuracy, as discussed in Section 3.2.6.

3.1 Technical Basis of Sample-Size Equations and Algorithms

Each of the subsections in this section correspond to one of the sampling goals listed in the
“Sampling Goals” pull-down menu in Version 2.0. Within each subsection PNNL’s and/or RTI’s quality
checking of the VSP sample-size equations and other algorithms is provided. Some of the common
mathematical notation used in these equations and algorithms is defined in Table 3.1. Other mathematical
notation is provided throughout the report as needed.

For the Measurement Quality Objectives (MQO ) module, VSP uses a two-component additive
variance model. In this model the total random variance of the measurements is equal to the sum of the
sampling variance and the analytical variance. Any random variations that arise from activities outside

the analytical laboratory are part of the sampling variance, O 2

sample - Any random variations that occur

within the analytical laboratory are part of the analytical variance , ij ical -

The sampling variance could include variations due to spatial differences, sample handling, field

®'S-PLUS is a registered trademark of the Insightful Corporation, Seattle, Washington.
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sampling methods and instruments, or field activities or other similar activities occurring outside the
analytical laboratory. The analytical variance includes variations among r different portions of the field
sample that undergo separate analytical treatment in the laboratory. Thus, the analytical variance may
include variations due to sample preparation, dilution, fusion, sample splitting, calibration, measurement,
or instrument variations or similar variations that are associated with the analytical laboratory. In the
VSP variance model, it is assumed that the entire analytical process in the laboratory, from sample
aliquoting and preparation through instrument measurements, is repeated for each of the r portions of the
field sample. The VSP MQO module applies to any two-component variance model as long as the
definitions of the r different portions of the field sample and the estimated analytical variance (Sjna ytical )
are consistent with the VSP variance model. The VSP MQO module can be used when the estimated
analytical variance (Sjnalytical ) supplied by the VSP user includes only those parts of the total variance

that are added during the analytical process applied to each of the r portions (analytical replicates) of a
field sample.

Table 3.1. Some Common Notation for Sample-Size Equations Used in Version 2.0 of VSP

Notation Description

n the minimum recommended number of samples that should be collected from a site, as
computed using one of the sample-size equations or algorithms in VSP

r the number of measurements (analytical replicates) that will be obtained for each field
sample

the probability that the VSP user is willing to tolerate that a Type I decision error will
be made, i.c., that the data collected and used in the appropriate statistical test will
falsely reject the null hypothesis. For example, if the null hypothesis is “the mean
concentration at the site exceeds the action limit,” then " is the probability the VSP user
can tolerate that the statistical test computed using the n data will incorrectly indicate
that the mean concentration does not exceed the action limit, in short, calling a dirty site
clean.

$ the probability the VSP user is willing to tolerate that a Type II decision error will be
made, i.e., that the data collected and used in the appropriate statistical test will falsely
accept the null hypothesis. For example, if the null hypothesis is “the mean
concentration at the site exceeds the action limit,” then $ is the probability the VSP user
can tolerate that the statistical test computed using the n data will falsely indicate the
mean concentration does exceed the action limit, in short, calling a clean site dirty.
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Table 3.1. Some Common Notation for Sample-Size Equations (cont.)

Notation

Description

)

the width of the “gray region” in the Decision Performance Goal Diagram (DPGD) used in the
DQO process (EPA 2000a) and in VSP. For example, if the sampling objective is to compare
the true mean of the site to the true mean of a background area, then ) is the difference between
the true site mean and the true background mean that the VSP user specifies is important to

detect with (high) probability 1 - . Similarly, if the objective is to compare the mean of the

site to a fixed action limit, then A is the difference between the true mean and the action limit
that is important to detect with (high) probability 1- /.

total

the true “total variance” of the population of all possible measurements made on all possible
samples collected from the study site. The model of the true total variance used in Version 2.0

. 2 2 2 2 . .
of VSPis O, = o + g analytical > Where g analytical 18 the true variance

sample

2

sample 13 the

component due to the analytical measurement process in the laboratory and 0

true variance component due to all other sources of variation, including variations in true
concentrations at different study site locations and the variance added due to selecting,
collecting, and transporting samples to the laboratory.

total

2
total *

f (x;,-%)°
2 — =l

total ~ n-1

the computed estimate of the true total variance, 0 If r=1 for all n field samples, then the

2

quantity s, .

is computed as S where X, is the measurement

obtained for the single aliquot from the i field sample and X is the arithmetic mean of the n

measurements, X .

2

sample

. . . . 2
an estimate of the total variance of the data X, that would be obtained if O btical =0

2
analytical

S

an estimate of the total variance of the data X, that would be obtained if the only variability in

the data were due to the analytical process, i.e., if Jszample =0

tl—a,df

the value of the Student’s t-distribution with df degrees of freedom. By definition, the
proportion of the distribution to the left of the value 7,_, dar s 1-"" . A table of the values of

tl—a,df is found in most statistics books, e.g., Gilbert (1987, Table A2).
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Table 3.1. Some Common Notation for Sample-Size Equations (cont.)

Notation Description

the value from the standard normal distribution for which the proportion of the distribution to the
-a left of Zl—a is 1-"*. A table of the values of Zl—a
Gilbert (1987, Table Al). If the selected probability of a false rejection, **, is made smaller, then
VA

1-a

Z,

is found in most statistics books, e.g.,

will be larger, leading to larger sample sizes. If the null hypothesis is that concentrations

at the site exceed the action limit, i.e., that the site is “dirty,” then Zl— g can be thought of as an

index number whose magnitude quantifies the strength of our desire to avoid deciding a dirty site
is clean.

the value of the standard normal distribution for which the proportion of the distribution to the

-B left of Zl_ B is 1-$. If the selected probability of a false acceptance, $, is made smaller, then
Z -8 will be larger, leading to larger sample sizes. If the null hypothesis is that concentrations

at the site exceed the action limit, i.e., that the site is “dirty,” then Zl— p can be thought of as an

index number whose magnitude quantifies the strength of our desire to avoid deciding a clean
site is dirty.

the cumulative standard normal distribution function, i.e.,

d(z2)= ﬁ J‘e_%xza’x.

A table of @ (Z) values is provided in most statistics books, e.g., Gilbert (1987, Table Al).

O (2)

3.1.1 Compare Average to a Fixed Threshold

Suppose a VSP user wants to determine the number of samples, n, that should be collected to use
in a statistical test of whether the true average concentration for a specified geographical area exceeds a
specified risk-based or regulatory-based threshold (upper limit). Version 2.0 of VSP provides several
different equations and algorithms for computing n. The method used is selected by the VSP user on the
basis of the shape of the underlying distribution of the data to be collected and the particular statistical
test that will be used.

If the data are expected to be normally distributed, then Version 2.0 provides methods for
determining the number of samples for the one-sample t test, the Sequential Probability Ratio Test
(SPRT), and Barnard’s Sequential Test. If the data are not expected to be normally distributed, then
sample-size methods for the Wilcoxon Signed Ranks Test and the MARSSIM Sign test are provided.

The sample-size equation or algorithm for each test is provided below, along with the

assumptions that underlie the use of that test. An assumption common to all tests is that the
measurements at different locations are not correlated.
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3.1.1.1 Data Are Normally Distributed

One-Sample t-Test

The one-sample t-test can be used to test if the true mean of the population exceeds a fixed upper
limit. The equation used in Version 2.0 of VSP to compute the minimum recommended number of
samples, n, needed for the test when the VSP user specifies that only r = 1 analytical replicate from each
sample will be made is

n=—2 v +0.522, G.1)

s2ulZia+2,,f

If the MQO module in Version 2.0 is used, in which case r =1, 2, ... m analytical replicates of
each field sample can be made, then the equation that is used to compute n is

2

S .
2 analytical ( )2
Ssample + 7 Z + Zl—ﬁ

n= : +0.52, (3.2)

I-a

The notation used in Equations (3.1) and (3.2) is defined in Table 3.1. These equations are computed

S

sample

using the values of @ , ,3 ,ALr s and Sananvicar that are specified by the VSP user.

total °

The assumptions that underlie the derivation of Equation (3.1) are that the data are normally
distributed and representative of the study site, they are not spatially or temporally correlated, and that
2 2
X — ks,,,,, is normally distributed with mean [/ — kO and variance (07)(1 + k?) , where k is a given
constant (Guenther 1981). The derivation of Equation (3.1) is found in Wallis (1947), Guenther (1977),
EPA (2000a, Appendix A), and EPA (1992, pp. F-8, F-9, and F-10). Equation (3.1) is used in the
statistics book by Bowen and Bennett (1988, pp. 155, 156), EPA (2000a), and EPA (2000b, pp. 3-7).

Guenther (1981) indicates that although Equation (3.1) is an approximation to the true minimum
sample size required for the one-sample t-test, Equation (3.1) usually yields the exact solution for n. The
exact solution is obtained using an iterative approach using tables of the non-central t distribution found
in Owen (1965).

Equation (3.2) also should provide a very accurate approximation of n for a specified value of r
because it is a straightforward extension of Equation (3.1) to the case of r > 1. For this case, it is easily
shown that the total variance is estimated by computing

2
2 _ 2 Sanalytical

total ~ ® sample

r
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2

Inserting this equation for s,

, into Equation (3.1) yields Equation (3.2).

Sequential Probability Ratio Test (SPRT)

Sequential sampling over time is provided in Version 2.0 of VSP to test if the true mean exceeds
a specified threshold value. The sampling is sequential in the sense that several sequential (in time) trips
to the study site may be necessary to collect a sufficient number of samples in order for the statistical test
to have the power specified by the VSP user to decide between the null or alternative hypothesis.
Sequential tests are useful if samples can be obtained and analyzed sequentially in near-real time, as may
be the case when Dynamic Work Plans or Expedited Site Characterization processes are feasible. These
tests may be particularly useful when in-field sampling and analysis methods are employed.

In this section, the Sequential Probability Ratio Test (SPRT) is discussed (Wald 1947; Wetherill
1966). This test requires that the standard deviation of the measurements be known with great accuracy
before the sampling study is conducted. In the next section of this report, Barnard’s sequential test is
discussed (Barnard, 1952; Wetherill, 1966). Barnard’s test can be used in place of the SPRT when the
standard deviation is not known with great accuracy.

The assumptions that underlie the SPRT test are that the data are normally distributed and
representative of the study site, the data are not spatially or temporally correlated, and the standard
deviation of the data to be collected is known with great accuracy.

The SPRT test in VSP works as follows if a map with at least one selected study area is provided
to VSP:

1. The VSP user inputs the DQO parameters (& , ,8 , null hypothesis, width of the gray region,

known standard deviation ( O ), and the threshold value) in the design dialog box. Also, the number of
samples to collect on each trip to the field is specified. When the “Apply” button in VSP is pressed, then
VSP places the required number of sampling locations for the first field trip on the map. VSP also
provides a listing of the geographical coordinates of the required samples.

2. The samples are collected and analyzed for the chemicals of concern.

3. The VSP user reopens the SPRT design dialog box, presses the “Input Values” button, and
inputs the measurements obtained for the samples collected. The VSP user then closes the data input
dialog box and VSP computes the mean and determines whether more samples are needed before a
decision can be made by the SPRT whether to accept the null hypothesis or the alternative hypothesis.
The sample mean is plotted on a decision graph in the VSP “Graph View” for ease of interpretation.

4. If more samples are needed, the Apply button is pressed and VSP places the additional
sampling locations on the map (avoiding existing sampling locations) and provides the geographical
coordinates of the new samples.

Steps 2 through 4 are repeated until there is enough data so that the SPRT can either accept the
null hypothesis or the alternative hypothesis with the performance specified by the VSP user. It is useful
to watch the VSP Graph View during the sequential sampling and testing process to see how close the
SPRT is to making a decision.
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If no sample areas on the site map have been selected by the VSP user, or no map is being used,
then the VSP user can enter as few or as many data values as desired. Also, in this case, it is not
necessary to close the design dialog box in order to enter more data values.

Suppose the null hypothesis selected by the VSP user is that the site is dirty. Then the SPRT
determines that there is enough evidence to accept the null hypothesis if the mean of the sample values is

greater than UL 4 - Also, the SPRT determines that there is enough evidence to accept the alternative

hypothesis if the mean of the sample values is less than LL; where

UL ‘AL—A+02A
- 2  An
LL ‘AL—A—UzB
- 2  An
and
1_
A=1n B
1-a
B=1n

B

In is the natural logarithm
@  is the maximum acceptable Type I decision error rate (probability of rejecting the null

hypothesis when the null hypothesis is true)

ﬂ is the maximum acceptable Type II decision error rate (probability of accepting the
null hypothesis when the null hypothesis is false)

A is the width of the gray region in the Decision Performance Goal Diagram (DPGD)

0? s the variance of the data, assumed to be known with great accuracy
n  is the number of samples collected thus far and used in the SPRT
AL is the action limit (threshold value)

If the null hypothesis is that the site is clean, then the SPRT determines that there is enough
evidence to accept the null hypothesis if the mean of the sample values is less than LL_ and that there is
enough evidence to accept the alternative hypothesis if the mean of the sample values is greater than UL,
where:

UL = AL+A+02A
¢ 2 An
A O°B
LL = AL + — -
¢ 2 An
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The notation for these equations is defined above.

VSP projects the number of additional samples needed to make a decision by using the following
algorithm:

1. Increase the value of n by 1.

2. Recalculate the upper and lower bounds using the new value of n.

3. If the sample mean falls outside the new boundaries, then the increase in n is given by VSP as
the number of additional samples needed.

4. Repeat Steps 1 through 3 up to 100 times

Barnard’s Sequential t-Test

Barnard’s sequential t-test can be used in place of the Sequential Probability Ratio Test (SPRT)
discussed in the previous section when the standard deviation is not known with great accuracy. The
assumptions that underlie Barnard’s sequential t-test are that the data are sampled sequentially from a
normal distribution and that the data are representative of the study site and are not spatially or temporally
correlated.

The VSP user goes through the same steps to use the sequential t-test using the VSP dialogue box
as was described above for the SPRT except that the user must initially supply the measurements for 10
samples collected at random from the study site of interest. VSP uses these data to compute a sample
standard deviation for the first iteration of the sequential t-test.

Null Hypothesis: Site is Dirty

If the null hypothesis selected by the VSP user is that the site is dirty, then the sequential t-test
determines that there is enough evidence to accept the null hypothesis if

In(L)2 ln( - aj
’ B

where

Ln is the likelihood ratio test statistic, which is computed using the method described in Appendix
A of this report

In is the natural logarithm

a  is the maximum acceptable Type I decision error rate (probability of rejecting the null hypothesis
when the null hypothesis is true), and

,B is the maximum acceptable Type II decision error rate (probability of accepting the null hypothesis
when the null hypothesis is false).

The sequential t-test determines that there is enough evidence to reject the null hypothesis and accept the
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alternative hypothesis if

In(L <1(Lj
n(L,)< I 7

Finally, the sequential t-test determines that the information from the n samples is not sufficient to make a
decision if

i vl
nl—,B n(L )< In F;

in which case additional samples are collected and the sequential test repeated using the full data set of all
measurements collected to date.

Null Hypothesis: Site is Clean

If the null hypothesis selected by the VSP user is that the site is clean, then the sequential t-test
determines that there is enough evidence to accept the null hypothesis if

In(L,) < ln( 'Ba) :

that there is enough evidence to reject the null hypothesis and accept the alternative hypothesis if
1-B
In(L,) 2 ln( o )

and that additional samples are needed if

ﬁa) <ln(Ln)<ln(1_a'B).

ln(
1 —_

Please see Appendix A for additional discussion of Barnard’s sequential t-test.

3.1.1.2. Data Not Required to be Normally Distributed

This section presents the methods in Version 2.0 of VSP that test if the true average exceeds the
threshold value for when the data are not necessarily normally distributed.
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Wilcoxon Signed Ranks Test

The Wilcoxon Signed Ranks test can be used to test whether the true median or mean of the
study-site population exceeds a fixed upper limit. The assumptions needed for this test are that the data
are representative of the study site, are not spatially or temporally correlated, and have a symmetric (but
not necessarily normal) distribution. Note that the test applies to either the mean or median when the
assumption of symmetry is true, because those two parameters have identical values when the population
of measurements has a symmetric distribution.

The equation used in Version 2.0 to compute a lower bound on the number of samples, n, needed
for the test when the VSP user specifies that only r = 1 analytical replicates from each field sample will be

obtained is
2 2
_ Stotal (Zl—a + Zl—,B)
n=116 %

+0.527 |, (3.3)

which is used in Guidance for Data Quality Assessment (EPA 2000b, page 3-12).

If the MQO module for this test is used, in which case r = 1, 2, or 3 can be used, then the equation
for n that is used in VSP is

2
S2 + Sanalyl‘ical (Zl_a + ZI_IB )2
r

sample
n=116 - +0.522, (3.4)

Equation (3.3) is identical to Equation (3.1) and Equation (3.4) is identical to Equation (3.2)
except for the 1.16 multiplier. The constant 1.16 is used because it is known (Conover 1999, p.363) that
the Wilcoxon Signed Ranks test will require no more than 1.16 times as many samples as the t-test to

achieve the @ and ,B decision error rate test performance specifications provided by the VSP user when

the data (obtained using random sampling) are normally distributed.

Noether (1987, Section 2.2) developed an alternative to Equation (3.3) for computing n needed
for the Wilcoxon Signed Ranks test. His method does not require that the data have a symmetric
distribution. The assumptions that underlie his method are that the data are representative of the
underlying population, the data are not correlated, and the computed Wilcoxon Signed Ranks test statistic
(the quantity computed using the data to make the test) is approximately normally distributed. Noether
(1987) indicates that the value of n computed using his method should achieve the performance

requirements for the test (as specified by @ and IB ) unless the n computed using his method is “quite

small.”

3.10



MARSSIM Sign Test

The sign test can be used to test whether the true median concentration of the population being
sampled exceeds a fixed upper limit value. The assumptions that underlie this test are that the data are
representative of the study site and they are not spatially or temporally correlated. The data need not be
symmetric nor normally distributed.

The formula used to compute the approximate number of samples, n, needed for the sign test
when only r = 1 analytical replicates per field sample will be obtained is given in the Multi-Agency
Radiation Survey and Site Investigation Manual (MARSSIM) (EPA 1997, page 5-33):

Z_+Z . f
n=1.20 200 2, : (3.5)
4(SignP - 0.50)
where
SignP = @ 4 (3.6)
S

total

Equation (3.6) is derived in Gogolak, Powers, and Huffert (1997, pp. 9-3 and 9-7).

VSP denotes the sign test as the MARSSIM sign test to signify that Equation (3.5) is taken from

the MARSSIM document (EPA 1997). The function @ (defined in Table 3.1) denotes the cumulative
distribution function of the standard normal distribution (a normal distribution with mean zero and

A
standard deviation 1). Hence, by definition, ¢ ( Soral ) is the fraction of the bell-shaped standard normal
distribution that is less than or equal to the value of 3 —. Note that SrAt > 0 because A | the width of the

A
gray region in the DPGD, must be greater than zero. VSP computes Sign P = O ( ) using the value

Stotal
of Sﬁal specified by the VSP user. EPA (1997, Table 5.4, p. 5-32) provides values of Sign P for selected
values of ~2— between 0.1 and 3.0.

Stotal

If the VSP user makes use of the MQO module, in which case r = 1, 2, ... m analytical replicates
per field sample can be used, then

: A
SignP = @ - 7 (3.7)
2 S analytical
Ssample

r
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Equation (3.5) is based on the formula for n proposed by Noether (1987, Section 2.1) for the sign
test. His equation for n is identical to Equation (3.5) except that Noether used the constant 1.00 in place
of 1.20. The assumptions that underlie Noether’s equation are that the data are representative of the
underlying population, the data are not correlated, and the computed sign test statistic (the quantity
computed using the data to make the test) is approximately normally distributed.

Noether (1987) indicates that the value of n computed using his method should achieve the
performance requirements for the sign test (as specified by & , ,3 and A ) unless the computed n is “quite

small.” The MARSSIM report (EPA 1997) used 1.20 instead of 1.00 in Equation (3.5) to provide
subjective added confidence that the larger value of n computed would result in achieving the
performance requirements specified for the test by the VSP user.

Equation (3.5) is used in VSP primarily because it is used in EPA (1997), which is a multi-agency
consensus document that was developed collaboratively by four federal agencies having authority and
control over radioactive materials: the U.S. Departments of Defense and Energy, the U.S. Nuclear
Regulatory Commission, and the EPA.

3.1.2 Compare Average to a Reference Average

Suppose a VSP user wants to determine the number of samples, n, that should be collected at a
study site and also the number of samples, m, that should be collected in a reference site (e.g., a
background area) to decide if the true average site concentration exceeds the true average reference area
concentration. For this situation, VSP provides several different equations for computing the
recommended minimum number of samples, n and m needed, with the restriction that n = m. The
equation used by VSP depends on which statistical test is selected by the VSP user: the “two-sample” t-
test, the Wilcoxon Rank Sum test, or the MARSSIM Wilcoxon Rank Sum (WRS) test. Each of these
tests and the methods VSP used to compute the number of samples is now provided.

3.1.2.1 Data Are Normally Distributed

Two-Sample t-test

The two-sample t-test is a test to evaluate if the true site mean exceeds the true reference-area
mean. The assumptions underlying the test are that the data are normally distributed, uncorrelated,
representative of the underlying site and reference populations, and the variance (which can be unknown)
of the site data equals the variance of the reference area data.

The equation used in VSP to compute the minimum recommended number of samples n and m
for the study site and the reference area, respectively, when r = 1 analytical replicates per field sample
will be made is

— 2St20tal (Zl—ﬂ + Zl_ﬁ )2

n=m= Az +0.25Z7, (3.8)

If the MQO module in VSP is used, in which case r = 1, 2, or 3 analytical replicates at the site and
reference-area is specified by the VSP user, then the equation used in VSP is
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2
Sana ica
2(Ss2ample + ljit 1 J(Zl—a + Z]‘ﬁ )2 (3 9)
+0.25Z>,

n=m= e
The key assumption that underlies the derivation of Equation (3.8), in addition to the assumptions
given above, is that
5 5 1/2
_ 2k Ssite + Sreference (3 10)
> .

X

site xre_‘f'erence

2
is normally distributed with mean K, = Hyoference = 2K0 and variance (%) (2 + k 2) , where k is an
arbitrary constant (Guenther 1981).

The derivation of Equation (3.8) is found in a more general context in Guenther (1977), where the
problem Guenther considers includes the two-sample t-test. Equation (3.8) is used in the statistics book
by Bowen and Bennett (1988, p. 168) and in EPA (2000b, p 3-24)

Guenther (1981) indicates that Equation (3.8) is an approximation to the true minimum sample
sizes n and m required for the two-sample t-test. However, he states that Equation (3.8) usually yields the
exact solution for n and m. The exact solution is obtained using an iterative approach using tables of the
non-central t distribution found in Owen (1965). Equation (3.9) should provide a very accurate
approximation of n and m for a specified r value because it is a straightforward extension of Equation

(3.8) to the case of r 2 1.

Methods other than Equations (3.8) and (3.9) also have been proposed for approximating n and m
for the two-sample t-test. Desu and Raghavarao (1990, pp. 31-33) give an iterative procedure as well as a
two-stage procedure that use the t distribution.

3.1.2.2 Data Not Required to be Normally Distributed

Wilcoxon Rank Sum Test

The Wilcoxon rank sum (WRS) test can be used to test whether the true median concentration at
the study site is larger than the true median at the reference area. The assumptions that underlie the WRS
test are that the site and reference data are representative of the site and reference areas, respectively, the
data are not correlated, and the two population distributions are identical in shape and have the same
(unknown) variance. The two distributions need not be symmetric or normally distributed.

The equation used in Version 2.0 VSP to compute the number of samples, n and m, for the site

and reference areas is
2
(Z 1-a + Z 1—,8)

AZ

2s’
n=m=116 —=

+0.25Z7, 3.11)

Equation (3.11) is also used in EPA (2000b, p. 3-34). The constant 1.16 in Equation (3.11) is used
because it is known (Conover 1999, p. 284) that the WRS test will require no more than 1.16 times as
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many samples as the two-sample t-test to achieve the & and IB test performance specifications provided

by the VSP user if the two population distributions (for the site and reference area) are normally
distributed and are identical except for their true median values.

If the MQO module for the WRS test is used and r = 1, 2, ... m analytical replicates per field
sample is specified by the VSP user, then the equation for n and m used in VSP is

2
S .
2 analytical ( )2
2 Ssample + 7 Zl—a' +Zl—ﬁ

n=m=1.16 : +0.25Z7, (3.12)

Equation (3.11) is identical to Equation (3.8) and Equation (3.12) is identical to Equation (3.9)
except for the 1.16 multiplier.

MARSSIM Wilcoxon Rank Sum (WRS) Test

Noether (1987, Section 3.0) developed an alternative equation for approximating the number of
samples required for the WRS test. Noether’s equation is

(Zl—a + Zl—,B )2
3(P.-0.5)

n+m= (3.13)

where n + m is the sum of the minimum number of study area and reference area samples needed for the
WRS test, assuming n = m. Noether (1987) assumed when deriving Equation (3.13) that the WRS test
statistic was approximately normally distributed, although the data themselves need not be normally
distributed. Equation (3.13) is a special case of a more general equation given by Noether (1987, Section
3.0) and used by EPA (1992) that allows the number of samples from the site and reference area to be
unequal. Equation (3.13) is used in EPA (1997, p. 5-28, Equation 5-1) and in EPA (1992, p. 6.3). If the
VSP user selects the MARSSIM WRS test option in VSP, then Equation (3.13) will be computed.

The parameter Pr in Equation (3.13) is the probability that a measurement of a sample collected
at a random location at the study site is greater than a measurement of a sample collected at a random
location in the reference area. The allowable values of P. that can be specified range from 0.5 to 1.0.

The difference, Pr - 0.5, is a measure of the difference between the site and reference distributions, A,

that the VSP user wishes to detect with high probability 1 - ,8 .

P is computed as
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A

ﬁatoml

P =@ (3.14)

when only r = 1 analytical replicate per field sample is measured. If the MQO module is used, then P, is
computed as

A

P =0 (3.15)
2

ﬁ 82 + Sana/ytica/

sample
p r

Equations (3.14) and (3.15) assume the data are normally distributed, which is necessary because

the function @ is the cumulative normal distribution function (see Table 3.1.). Hence, although the WRS
test does not require that the data be normally distributed, the normality assumption is used to determine
the number of samples needed. In addition, the validity of Equation (3.13) requires that the WRS test
statistic is itself approximately normally distributed.

3.1.3 Confidence Interval for the Mean

One can assess whether the true mean exceeds a threshold value by computing a one-sided or a
two-sided confidence interval for the mean and then looking to see if that interval overlaps the threshold
value. For this case, VSP computes the number of samples required to obtain an interval that provides the
required confidence specified by the VSP user.

The equation used in VSP to compute the minimum recommended value of n for a one-sided
confidence interval, when only r = 1 analytical replicates per field sample is measured is as follows:
2

{
n=| 22 | g2 (3.16)

d total

where d denotes the VSP user’s largest acceptable difference between the estimated mean, X , and the
true mean [/ . In other words, the VSP user specifies that n should be large enough such that the absolute

value of X - f/ will be no larger than the specified value of d with 100 (1- @ ) percent confidence. The
quantity d can also be interpreted as the width of the one-sided confidence interval on [/ that the VSP

user specifies should not be exceeded. If a two-sided confidence interval is used, then d is the half~width
of that interval.

2
total

The notation  f;_, g and s is defined in Table 3.1. As n appears on both sides of Equation

(3.17) (on the right side of the equation n is involved in the degrees of freedom, df), the equation is solved
iteratively in VSP to determine the smallest n that satisfies the equality sign. The iteration scheme used is
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given in Gilbert (1987, p. 32). Equation (3.16) is a standard formula found in many statistics books, e.g.,
Hahn and Meeker (1991, p. 136), Iman and Conover (1983, p. 188), and Gilbert (1987, p. 32).

If the MQO module is used, in which case r = 1, 2, or 3 analytical replicates per field sample are
measured, then n is computed using
war ) ’
1-a.df 2 + Sanalytical
d Ssample

(3.17)
r

Equation (3.17) is a straightforward extension of Equation (3.16).

If the VSP user wants to use a two-sided confidence interval to test whether the true mean
exceeds the action limit, then 7,_, q4r in Equation (3.16) and Equation (3.17) is replaced by 7,_, , dar -

Furthermore, d is now the half-width of the confidence interval that must be achieved.

Hahn and Meeker (1991, pp. 137-141) suggest two alternative methods for computing n. These
methods have not been evaluated for use in VSP.

3.1.4 Estimate the Mean

Suppose the sampling goal is to estimate the mean of a variable of interest in a defined
geographical area. The three designs discussed in this section, Stratified Sampling (StS), Ranked Set
Sampling (RSS) and Adaptive Cluster Sampling (ACS), are sampling strategies that can provide better
estimates of the mean than is possible using simple random sampling. These three methods are described
in detail in EPA (2001). These methods, as well as their underlying assumptions and the process for
determining the number of samples required are briefly described in the sections below.

3.1.4.1 Stratified Sampling (StS)

The primary purpose of the Stratified Sampling (StS) sampling design is to estimate the mean for
a study area that has been divided into different subareas (strata) on the basis of pre-existing information
about the past use of the site. The strata must not overlap and they should be more internally
homogeneous than the entire study area (all strata combined). In this situation, the use of StS to
determine the locations where samples will be collected in the strata should provide a more precise
estimate of the mean of the total study area than can be achieved if simple random sampling is used to
determine sampling locations over the study area. EPA (2001) and Gilbert (1987) discuss StS in the
context of environmental sampling.

The assumptions that underlie these methods are (1) that the sampling locations are determined
using either simple random sampling or a systematic grid whose starting position in the field is
determined at random, and (2) the measurements obtained are statistically independent (not correlated).
There is no requirement that the measurements be normally distributed in order to use them to estimate
the mean. However, if a confidence interval for the estimated mean will be computed, then the number of
samples should be large enough that the mean is normally distributed.

Version 2.0 of VSP uses inputs provided by the VSP user to compute the total number of samples
needed (for all strata combined) as well as the optimal allocation of those samples to the strata. The VSP
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user has a choice of 3 methods for determining the total number of samples and 2 choices for determining
the optimum allocation of those samples to the strata. These methods are now described.

Equations to Compute the Total Number of Samples, n, in Stratified Sampling

Method 1: Minimize the Variance of the Sample Mean for Fixed Cost of Sampling and Analysis
VSP computes the total number of samples, n, over all strata in such a way that the precision of

the estimated population mean is maximized for a given pre-specified fixed total cost, C-C,, of collecting
and measuring samples. The formula used to calculate n is (Gilbert 1987, page 51)

L Ws,
v

> Wisier

where

L is the number of strata, h=1, 2, ... , L,

S, is the estimated total standard deviation of the measured values in stratum h,
VVh =N n / N is the weight associated with stratum h,

N i is the total number of possible sampling locations (units) in stratum h,

N = Z N , 18 the total number of possible units in all strata combined,
h=1
L

C= c, t Zchnh is the total sampling budget,
h=1

c, is the fixed overhead cost,

¢, s the cost of collecting and measuring a sample in stratum h, and

n,  is the number of samples collected in stratum h.

The VSP user inputs values for L, C, N n> Sy C,,and ¢, inthe VSP dialogue box for StS.

VSP computes the values of the 7, using one of the two methods described below.

Method 2: Minimize Cost for a Specified Required Variance of the Sample Mean

The total number of samples is computed to achieve the pre-specified precision of the estimated
population mean without any specified upper limit on stratum costs. Note again, that n is the total
number of samples for all strata combined.

The formula used to calculate n is (Gilbert 1987, page 51)
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where V is the pre-specified variance (precision). The other notation has been defined above.

Method 3: Predetermined Number of Total Samples, n

The VSP user supplies the total number, n. There is no statistical basis for claiming this value of
n will result in an estimated mean that is adequate for any particular design goal. This method is provided
in VSP for a situation where n has been predetermined by some non-statistical process and there is no
option but to select n samples.

Equations to Determine the Allocation of the n Samples to the Strata in Stratified Sampling

The VSP user selects either Method 1 or Method 2 described below to determine the number of
samples that should be collected in the h™ stratum. These methods assume that the following cost
equation is applicable:

L
C: Co + Zchnh

h=1

Method 1: Optimal Allocation of n Samples to the Strata such that the Variance of the Sample Mean is
Minimized for a Fixed Cost C

Version 2.0 of VSP uses the following formula to compute the number of samples that should be
collected in the h™ stratum in order that the sample mean based on n measurements has the minimum
variance for a fixed total cost C (from Gilbert 1987, Equation 5.9, page 50):

N,s, /+/c,

n—
ZNhSh/ C
h=1

The notation in this equation was defined above.

Method 2: Optimum Allocation when the Stratum Costs, ¢,, are Equal for all Strata (Neyman Allocation)

When the VSP user selects this allocation method, the number of samples that should be collected
from the h™ stratum, n, , is computed as follows (Gilbert 1987, equation 5.10, page 50):
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The notation used in this equation was defined above.

n, =

3.1.4.2 Ranked Set Sampling (RSS)

Ranked Set Sampling (RSS) was originally developed by MclIntyre (1952) for estimating the
mean. RSS combines simple random sampling with either professional knowledge and judgment or field
screening measurements to select places to collect samples. RSS may provide for a better estimate of the
mean at equal or less cost. EPA (2001) describes and illustrates RSS applications and methods.

A simple ecological example will illustrate the ranked set sampling method. Suppose we need to
estimate the average age of trees on a property and that we want to measure 30 trees to estimate the
average. The RSS design provides a way to select which 30 trees to measure using our judgment.
Suppose we decide to visually (judgmentally) assess the size of a tree to get a rough idea of its age.
Begin by randomly selecting, say, three trees and judge by eye which tree is the smallest. Mark the
smallest tree to be measured and ignore the other two. Next, randomly select another set of three trees to
rank. Mark the medium sized tree and ignore the other two. Next, randomly select another three trees.
Mark the largest tree and ignore the other two. Repeat this procedure a total of 10 cycles for a total of 90
trees. 30 of the trees will have been marked and 60 ignored. Of the 30 marked trees, 10 are from a
stratum of generally smaller trees, 10 are from a stratum of generally middle-sized trees and 10 are from a
stratum of generally larger trees. Determine the age of each of the 30 marked trees by coring or some
other appropriate measurement technique and use that measurement to estimate the average age of the
trees on the lot.

In this illustration there are r = 10 cycles and m = 3 trees chosen per cycle. In practice, the
number of sample locations chosen per cycle (the set size, m) and the number of cycles, r, is determined
using a systematic planning process, which is described in this section. Version 2.0 of VSP implements
the systematic process needed to determine the number of cycles, and hence, the number of locations to
be ranked and the number of locations to be measured. VSP can also place ranking and sampling
locations on the map of the study site.

The assumptions that underlie RSS are (1) the sampling locations ultimately chosen to be
sampled are among those initially selected using simple random sampling, (2) either judgment or
screening measurements are used to rank potential sampling locations, (3) the ranking method used does a
very good job of ranking, and (4) the measurements are not correlated. The data need not be normally
distributed for the purpose of estimating the mean, the application used in Version 2.0 of VSP. If the goal
is to compute confidence limits on the mean, then the number of measurements used to compute the
sample mean should be large enough that the sample mean itself is normally distributed.

Determine the Number of Locations to Sample in RSS
There are 2 major types of RSS designs: balanced and unbalanced. Balanced designs are used

when the analytical measurements of interest are expected to be symmetrically distributed about the
mean. Unbalanced designs are used when the distribution of measurements is skewed to higher values.
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Determining the number of ranked set samples to collect is a two-part process: Part 1 and Part 2.

Part 1: Determine if RSS is More Cost-Effective than Simple Random Sampling Alone for

Estimating the Mean

The cost ratio (cost of an analytical measurement divided by cost of ranking a field location) is
compared to a cost ratio threshold to determine if RSS is more cost effective than SRS. If the cost ratio
for the given study exceeds the cost threshold, then RSS is cost-effective relative to simple random
sampling (SRS) and should be used in place of SRS. If the cost ratio does not exceed the threshold, then
RSS is not cost-effective and will cost more than SRS to achieve the same precision in the estimated
mean. However, if the additional cost is not prohibitive, RSS may still be desired because it will usually
provide a more precise estimate of the mean than SRS.

If professional judgment is used to do the ranking, the cost ratio threshold is taken from the
following table (based on Figure 3 in Mode et al. 1999).

Lab Data Degree of Set Size = 2 Set Size =3 Set Size = 4 Set Size =5
Distribution Ranking Error

Symmetric None 4 3 3 3
Symmetric Substantial 7 6 6 6
Asymmetric None 6 5 5 4
Asymmetric Substantial 10 9 9 9

If field screening measurements are used to do the ranking of field locations, the cost ratio
threshold is obtained from the following table (based on Figure 4 of Mode et al. 1999):

Analysis / Set Size | Set Size Set Size Set Size Set Size Set Size Set Size
Screening =2 =3 =4 =5 =6 =7 =8
Correlation

1.0 5 4 3 3 2 2 2

0.9 6 6 5 5 5 5 5

0.8 7 8 8 8 8 9 9

0.7 12 12 12 13 14 15 16

Part 2: Determine the Number of Ranked Set Sampling Samples Needed to Estimate the Mean

Version 2.0 of VSP uses a five-step process to determine the number of ranked set samples.

Step 1: Determine the Number of Samples if Simple Random Sampling Alone is Used
Instead of RSS
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Balanced RSS Design

For balanced RSS designs, the number of samples needed for simple random sampling, 71, , is

calculated such that the estimated mean will be within a pre-specified margin of error from the true mean
at a specified confidence level. Either a one-sided or a two-sided confidence interval equation can be
used. The assumptions used in Version 2.0 for this design is that the distribution of the data is normal and
the measurements are not correlated. The normality assumption is used to determine the relative
precision, as discussed below in Step 3.

If the VSP user selects a one-sided confidence interval and a balanced RSS design, then the
equation used in Version 2.0 to calculate the number of samples needed for simple random sampling, 77,

2
_ 2 | e
no - Stotal d

1S

where

2

S total

is the total standard deviation of the measurements from the laboratory that were collected from

the study area
d 1s the maximum desired width of the one-sided confidence interval for the mean

t_ a.df is the value of the Student’s t distribution with n-1 degrees of freedom (df) such that the

proportion of that distribution less than #,_, dar is1-a

For a two-sided confidence interval and a balanced RSS design, the equation used is identical to the
one immediately above except that (1) d is the maximum desired half-width of the two-sided confidence

interval, and (2) 7,_, df is replaced by 7,_, » dar which is the value of the Student’s t distribution with n-1

degrees of freedom (df) such that the proportion of that distribution less than 7,_, , d isl-a/2.

Because n appears on both sides of the above equations (on the right side it appears in the degrees of

freedom of the t distribution), the equation is solved iteratively using the method in Gilbert (1987, pg. 32).
Unbalanced RSS Design

For unbalanced RSS designs, the number of samples is computed using the “Adjusted Classical
Formula” method in Perez and Lefante (1997, page 2789). The assumptions used in Version 2.0 for this
design are that the distribution of the data is lognormal and the measurements are not correlated. The first
step of this method is to compute an approximate sample size using the following formula:

e =[ 2222 (gD -

where

n is the approximate recommended minimum number of samples

classic
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Zl_ /> 18 the value of the standard normal distribution such that the proportion of the distribution less than

Z_,nisl-a/2

GSD s the geometric standard deviation

In is the natural logarithm
m is the maximum proportion difference that can be tolerated between the estimated mean and the true
mean.

Next, the following linear regression equation is used to calculate the recommended minimum
number of samples:

no = ﬂo t ﬂl (nclassic)

where

n, is the recommended minimum number of samples needed for simple random sampling,
ﬂ ., is the Y-intercept of the regression line, and

ﬂl is the slope of the regression line.

ﬂ . is obtained from the following table (from Table III in Perez and Lefante, 1997, page 2791)
Confidence | GSD = GSD = GSD = GSD = GSD = GSD = GSD =
Level 1.1 1.5 2.0 2.5 3.0 3.5 4.0

90% 2.9532 7.5249 11.3183 15.5638 20.1322 25.9327 30.3223
95% 3.3331 7.9237 14.0744 20.5406 27.1563 33.6865 40.1084
99% 4.9265 11.2470 20.5069 30.2478 40.1743 51.1945 60.6576

ﬂl is obtained from the following table (from Table III in Perez and Lefante, 1997, page 2791)
Confidence | GSD = GSD = GSD = GSD = GSD = GSD = GSD =
Level 1.1 1.5 2.0 2.5 3.0 3.5 4.0

90% 0.4714 0.6926 0.8509 0.8794 0.8499 0.7731 0.7033
95% 0.4726 0.8094 0.9046 0.9129 0.8731 0.8072 0.7288
99% 0.4740 0.8865 0.9808 0.9877 0.9444 0.8612 0.7796

Both of the above tables assume the data are lognormally distributed.

Step 2: Select a Value for the Set Size, m

The selected value of m is usually based on practical constraints in ranking locations in the field using
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professional judgment or field screening measurements. It may be difficult to use professional judgment to
accurately rank by eye more than m =4 or 5 locations. Other constraints that may affect the size of m are
time, staff, equipment, and other cost considerations. VSP limits m to 5 for judgment sampling and to 8 for
field screening measurements.

Step 3: Determine the Relative Precision, RP, of RSS Compared to Simple Random
Sampling

Balanced RSS Designs

For balanced designs, relative precision (RP) is found from the following table assuming the data
are normally distributed [from Table 1 of Patil et. al. (1994, pg.176)]:

Set Size =2 Set Size =3 Set Size =4 Set Size =5

1.467 1.914 2.347 2.770

If the set size, m, is greater than 5, the RP is found using the following linear regression formula:
RP =0.4342 m + 0.6048
Unbalanced RSS Designs
For unbalanced designs, RP is found using a two-step process. First, a value for the RP is found

from the following table, which assumes the data are lognormally distributed and that a balanced RSS
design is being used [from Table 1 of Patil et. al. (1994, pg.177)]:

Set CV* Cv= | CV= [ CV= | CV= | CV= | CV= [ CV= | CV= | CV=

Size = 0.1 0.202 | 0.307 | 0.416 | 0.533 | 0.658 | 0.795 [ 0.947 1.117 1.311
2 1.46 1.45 1.42 1.40 1.37 1.33 1.29 1.26 1.22 1.19
3 1.90 1.87 1.83 1.77 1.70 1.62 1.55 1.47 1.40 1.34
4 2.33 2.28 2.21 2.11 2.00 1.89 1.78 1.67 1.56 1.47
5 2.75 2.68 2.57 2.44 2.29 2.14 1.99 1.84 1.71 1.59
6 3.15 3.07 2.93 2.76 2.57 2.37 2.18 2.00 1.84 1.70
7 3.56 3.45 3.28 3.07 2.83 2.60 2.40 2.16 1.96 1.80
8 3.95 3.86 3.61 3.36 3.09 2.81 2.55 2.30 2.08 1.89

2
*CV is the coefficient of variation, which is defined to be CV = 4/ €™ %P’ — 1 when data are
lognormally distributed.

Then, the RP from the above table is multiplied by a correction factor obtained by linear interpolation from
the following table to obtain the approximate RP value for the unbalanced RSS design.
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Ccv 0.1 0.3 0.5 0.8 1.3

Correction 1.01 1.08 1.2 1.5 1.7
Factor

Step 4: Compute the Number of Cycles, r

Number of cycles, r, is computed using the following formula:

(no / m)
RP

V=

Step 5: Compute the Total Number of Samples that Should be Collected.

For balanced designs, the total number of samples required is found using the following formula:
n=rxm

For unbalanced designs, first the number of times, t, the largest rank needs to be sampled is found from the

following table (from Table 8-5 in QA/G-5S, which was constructed from Figure 6 in Kaur et al 1995, page
14 and in Kaur et al. 1997):

Cv 0.25 0.5 1.0 1.25 1.5 2.0 2.5 3.0 35 4.0

t 1 2 3 4 5 6 7 8 9 10

The total number of samples for unbalanced designs is then found using the following formula:
n=rx(m+t-1)
3.1.4.3 Adaptive Cluster Sampling (ACS)

Adaptive Cluster Sampling (ACS) uses a probability-based design such as simple random sampling
to select an initial set of field units (locations) to sample. Then, additional neighboring samples are selected
for observation when a characteristic of interest is present in an initial unit or when the initial unit has an
observed value that meets some pre-specified condition (e.g., when a critical threshold value is exceeded).

ACS is appropriate in situations where the characteristic of interest is sparsely distributed but
highly aggregated (clustered). Examples of such populations can be found in mineral investigations
(unevenly distributed ore concentrations), animal and plant populations (rare and endangered species),
pollution concentrations and hot spot investigations, and epidemiology of rare diseases. Possible
environmental applications of ACS include soil remediation (investigating the extent of soil contamination
while simultaneously estimating the mean), hazardous waste site characterizations, surveying Brownfields,
and determining the extent of occurrence of effects of an airborne source of pollutant on nearby flora and
fauna. Additional information on ACS is available in EPA (2001), Thompson and Seber (1996), Thompson
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(1992, chapter 24) and Thompson (1990).

Two assumptions that underlie ACS are (1) the initial sampling locations are selected using simple
random sampling, stratified sampling, grid sampling, or some other probability-based sampling design, and
(2) the measurements obtained are statistically independent (not correlated).

ACS is implemented in Version 2.0 of VSP in four steps as now presented.
Step 1. Divide the Sample Area into a Grid of Sampling Units

VSP divides the selected sample area into square grid units of the specified size. The size of the
grid unit is specified by the VSP user on the design dialog box. VSP assumes that a single measurement is
associated with each grid unit.

Step 2. Define the Sample Design
2.1. Choose the initial set of sampling units

VSP computes the number of sampling units that should be sampled in the initial sample, n, ,by
computing the number of samples required for computing a confidence interval for the mean. An
assumption is made that either the measurements themselves have a normal distribution or the estimated
mean has a normal distribution. VSP determines the sampling locations using simple random sampling.

For a one-sided confidence interval, the equation used by VSP to compute n, is given by Equation
(3.16) for which d is the maximum desired width of the confidence interval. For a two-sided confidence
interval, the equation used to calculate the number of initial samples is the same as Equation (3.16) except

that d is the desired half-width of the desired confidence interval and 7,_ a.df is replaced by 7,_, 2df

which is the value of the Student's t-distribution with n-1 degrees of freedom (df) such that the proportion of
that distribution that is less than 7,_, , dr is 1 = a /2 . Because n appears on both sides of these

equations, (on the right side it appears in the degrees of freedom of the t distribution), the equation is solved
iteratively using the method in Gilbert (1987, pg. 32).

2.2. Specify a rule or criterion for performing follow-up sampling

A criterion is needed to decide when follow-up sampling of neighboring grid units is needed.
Version 2.0 of VSP only supports the use of a threshold criterion. That is, if a measured value for an initial
unit exceeds some specified threshold value, then the grid units defined to be in the “neighborhood” of that
unit need to be sampled.

2.3 Define the neighborhood of a sampling unit

VSP supports the use of two different neighborhoods: a 4-